Fechar

@PhDThesis{Jauer:2014:EsSoRe,
               author = "Jauer, Paulo Ricardo",
                title = "Estudo sobre reconex{\~a}o magn{\'e}tica na magnetopausa 
                         terrestre por meio de simula{\c{c}}{\~a}o MHD 3D BATS-R-US",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2014",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2014-04-28",
             keywords = "magnetosfera, magnetopausa, vento solar, simula{\c{c}}{\~a}o 3D 
                         MHD, reconex{\~a}o magn{\'e}tica, magnetosphere, magnetopouse, 
                         solar wind, MHD 3D simulation, magnetic reconnection.",
             abstract = "A reconex{\~a}o magn{\'e}tica {\'e} um processo f{\'{\i}}sico 
                         fundamental no contexto da intera{\c{c}}{\~a}o vento 
                         solar-magnetosfera terrestre manifestando-se, por exemplo, na 
                         din{\^a}mica dos fluxos de plasma na regi{\~a}o da magnetopausa 
                         diurna e no conte{\'u}do energ{\'e}tico da magnetosfera. Neste 
                         trabalho analisamos seus efeitos globais, para diferentes 
                         orienta{\c{c}}{\~o}es do campo magn{\'e}tico 
                         interplanet{\'a}rio (IMF) e par{\^a}metros do vento solar, 
                         utilizando-se o modelo MHD 3D Global BATS-RUS. Na magnetopausa 
                         observou-se que os fluxos de plasma deslocam-se perpendicularmente 
                         {\`a} linha-X de reconex{\~a}o, quando o IMF {\'e} puramente 
                         sul, \$B_{z}\$< O, ou possue, tamb{\'e}m, uma componente 
                         \$B_{y}\$ n{\~a}o nula. Nas simula{\c{c}}{\~o}es a linha-X 
                         localiza-se na regi{\~a}o equatorial quando \$B_{z}\$<O e 
                         encontra-se rotacionada em rela{\c{c}}{\~a}o ao plano da 
                         ecl{\'{\i}}ptica, no sentido anti-hor{\'a}rio e hor{\'a}rio, 
                         respectivamente, para um campo interplanet{\'a}rio com 
                         componentes (O, \$B_{y}\$ \$-B_{z}\$) e (O, \$-B_{y}\$, 
                         \$-B_{z}\$). Estas orienta{\c{c}}{\~o}es foram confirmadas 
                         atrav{\'e}s da aplica{\c{c}}{\~a}o do modelo de Gonzalez e 
                         Mozer (1974). A compara{\c{c}}{\~a}o entre o padr{\~a}o dos 
                         deslocamentos dos fluxos modelados pelo BATS-R-US e pelo modelo de 
                         Cooling et aI. (2001) mostrou que estes diferem suas 
                         trajet{\'o}rias nas regi{\~o}es dos flancos e altas latitudes. 
                         Al{\'e}m disso, estimou-se a taxa de energia eletromagn{\'e}tica 
                         em uma regi{\~a}o da magnetocauda, via integra{\c{c}}{\~a}o da 
                         diverg{\^e}ncia do fluxo do vetor de Poynting. Os resultados 
                         desta estimativa foram compilados em uma lista que consta de 22 
                         eventos. Tais eventos revelam aspectos f{\'{\i}}sicos 
                         fundamentais relacionados {\`a} intera{\c{c}}{\~a}o entre o 
                         vento solar e a magnetosfera terrestre. Para um IMF-\$B_{z}\$ 
                         norte, independentemente \$B_{y}\$ > O ou \$B_{y}\$ < O, os 
                         valores estimados da taxa de energia eletromagn{\'e}tica foram 
                         semelhantes. Isso {\'e} verificado, tamb{\'e}m, quando o 
                         IMF-\$B_{z}\$ {\'e} sul. No entanto, a taxa de energia {\'e} 
                         diferente para os dois casos, sendo maior para \$B_{z}\$ sul. 
                         Quando a magnitude do IMF-\$B_{z}\$ {\'e} aumentada de 
                         -10\emph{nT} para -30\emph{nT}, observa-se um decr{\'e}scimo no 
                         fluxo de energia eletromagn{\'e}tica. Isto ocorreu devido ao 
                         dom{\'{\i}}nio da for{\c{c}}a magn{\'e}tica em 
                         rela{\c{c}}{\~a}o ao gradiente de press{\~a}o na regi{\~a}o da 
                         bainha magn{\'e}tica (Lopez et aI., 2010). Calculou-se, 
                         tamb{\'e}m, a taxa de energia na magnetosfera para o evento de 
                         tempestade magn{\'e}tica de 22-23 de setembro de 1999. Os 
                         resultados mostraram que, durante o pico m{\'a}ximo da tempestade 
                         magn{\'e}tica, a taxa de energia que penetrou a magnetocauda foi 
                         de 2,89x\$10^{13}\$ W. Estes resultados foram comparados {\`a} 
                         taxa de energia dissipada obtida com a equa{\c{c}}{\~a}o de 
                         Akasofu (1981), que para esta tempestade foi de 1,63x\$10^{13}\$ 
                         W. Um balan{\c{c}}o energ{\'e}tico mostrou que 56\% desta 
                         energia, {\'e} dissipada nas diferentes regi{\~o}es internas da 
                         magnetosfera, enquanto os 44\% restantes s{\~a}o liberados 
                         juntamente com plasm{\'o}ides. Os resultados obtidos pela 
                         modelagem BATS-R-US concordam com aquele apresentado, por De Lucas 
                         et aI. (2007), cujo valor foi de 2,97x\$10^{13}\$ W para esta 
                         tempestade. Atrav{\'e}s da modelagem desta tempestade 
                         geomagn{\'e}tica pode-se quantificar e testar a robustez e 
                         precis{\~a}o da metodologia desenvolvida para o c{\'a}lculo da 
                         penetra{\c{c}}{\~a}o do fluxo do vetor de Poynting para 
                         regi{\~o}es internas da magnetocauda. ABSTRACT: The fundamental 
                         physical process in the context of the solar windmagnetosphere 
                         interaction is called magnetic reconnection. It plays an important 
                         role on the dynamic of the dayside magnetopause plasma flows and 
                         in the energy content of Earth 's magnetotail. In this study its 
                         global effects were analyzed throughout different interplanetary 
                         magnetic field (IMF) orientations and solar wind plasma parameters 
                         simulations, performed by the 3D MHD global model BATS-R-US. At 
                         the dayside magnetopause our results indicate that when IMF is 
                         purely southward (\$B_{z}\$ < O) or has a non-zero \$B_{y}\$ 
                         component, the plasma flows move perpendicularly to the 
                         reconnection X-line. The X-line, for a purely southward IMF, was 
                         located at the equator. When a non-zero \$B_{y}\$ component was 
                         added the X-line rotated relative to the plane of the ecliptic, in 
                         a counterclockwise sense for \$B_{y}\$ > O, and in a clockwise 
                         sense for \$B_{y}\$ < O. The BATS-R-US X-line's location and 
                         orientation have been verified by applying the analytical model of 
                         Gonzalez and Mozer (1974). The electromagnetic energy rate, within 
                         a domain located at the tail, was also estimated by the 
                         integration of the Poynting vector divergence. The results were 
                         gathered in a list of 22 events. This list revealed fundamental 
                         physical aspects regarding the solar wind-magnetosphere 
                         interaction. We have found that the electromagnetic energy rate, 
                         in the magnetotail, for a due northward and duskward IMF 
                         orientation was similar to that of a due northward and dawnward 
                         IMF. The same behavior is verified for a southward IMF 
                         \$B_{z}\$, however, larger in this case. We have also simulated 
                         the magnetospheric response to a gradual increase in the magnitude 
                         of the due southward IMF (\$B_{z}\$) component (from -10 to -30 
                         \emph{nT}). The energy rate was sustained when \$B_{z}\$ 
                         decreased from -10 to -15 \emph{nT}. However, when the 
                         \$B_{z}\$ decreased from -20 to -30 \emph{nT} the energy has 
                         also decreased. This was due to the enhanced magnetic field 
                         strength at the magnetosheath region in relation to pressure 
                         gradient (Lopez et aI., 2010). We have, also, modeled the main 
                         phase of the September 22-23, 1999 geomagnetic storm. To which we 
                         have estimated the energy rate at the tail in 2,89x\$10^{13}\$ 
                         W, during the peak of the storm. This result was compared to the 
                         amount of the energy dissipated in the magnetosphere for the storm 
                         obtained by the empirical equation derived by Akasofu (1981): 
                         1,63x\$10^{13}\$ W. Our comparison indicated that 56\% of this 
                         energy rate was dissipated in different regions of the inner 
                         Earths magnetosphere, whereas the remaining 44\% was assumed to 
                         be released along with plasmoids. The results obtained with the 
                         BATS-R-US simulation agree with that presented by De lucas et aI. 
                         (2007) whose estimated energy input value was 2,97x\$10^{13}\$ W 
                         for this storm. By modeling an actual geomagnetic storm event we 
                         could quantify and test the robustness and accuracy of the 
                         methodology developed for the calculation of the penetration of 
                         the Poynting vector flows to the inner regions of the Earths 
                         magnetotail.",
            committee = "Batista, Inez Staciarini (presidente) and Alarcon, Walter Demetrio 
                         Gonzalez (orientador) and Costa, Cristiane Loesch de Souza 
                         (orientadora) and Souza, Jonas Rodrigues de and Alves, Maria 
                         Virg{\'{\i}}nia and Lucas, Aline de and Sim{\~o}es Junior, 
                         Fernando Jaques Ruiz",
         englishtitle = "Earth´s magnetopause magnetic reconnection study through a 3D MHD 
                         BATS-R-US simulation",
             language = "pt",
                pages = "181",
                  ibi = "8JMKD3MGP5W34M/3G66A85",
                  url = "http://urlib.net/ibi/8JMKD3MGP5W34M/3G66A85",
           targetfile = "publicacao.pdf",
        urlaccessdate = "27 abr. 2024"
}


Fechar